Использование высокотемпературных сверхпроводников в электродвигателях снижает габариты и вес систем электроснабжения и электродвижения, что крайне важно при создании воздушных судов. Кроме того, использование сверхпроводимости позволит повысить КПД электродвигателя практически до 100%.

 

В России впервые проведены лабораторные испытания компонентов авиационной интегрированной электроэнергетической системы на базе единой высокотемпературной сверхпроводниковой (ВТСП) платформы, утверждает Фонд перспективных исследований (ФПИ).

сверхпроводник, электродвигатель,  HTS, турбогенератор, высокотемпературные сверхпроводники, самолет, электросамолет, ВТСП-платформа, Россия
E-Thrust представляет собой концепцию электрической распределительной двигательной установки для снижения расхода топлива, сокращения выбросов и снижения уровня шума (Источник: Airbus Group, 2016).

Соответствующая платформа состоит из аккумуляторной батареи, ВТСП-кабеля, ВТСП-токоограничивающего устройства и ВТСП-электродвигателя. Испытания продемонстрировали возможность обеспечить электропитание двигателя исключительно за счет специально разработанной аккумуляторной батареи высокой мощности.

Разработку планируется использовать в составе экспериментальной авиационной гибридной силовой установки (ГСУ), над которой работают в Центральном институте авиационного моторостроения. Тестирование ГСУ в составе летающей лаборатории намечено на 2020-2021 годы.

 

 

Высокотемпературные сверхпроводники

К электродвигателям для самолетов, в сравнении с электродвигателями для электромобилей,  предъявляют гораздо более экстремальные требования и прежде всего в соотношении веса и выходной мощности. Таким образом, обычные электродвигатели, состоящие из меди, железа и постоянных магнитов, конструкция которых вполне подходит для электромобилей, не соответствуют заявленным требованиям для самолетов.

 

Электромоторы по мере увеличения мощности наращивают массу, объем и тепловыделение. Требуются новые технологии, которые сделали бы их более мощными и легкими. Для отечественных разработчиков гибридных силовых установок настоящим прорывом стало сотрудничество с российской компанией «СуперОкс» — одним из пяти крупнейших в мире поставщиков материалов со свойствами высокотемпературной сверхпроводимости (ВТСП). Сейчас «СуперОкс» разрабатывает электродвигатели со статором из сверхпроводящих материалов (охлаждаемых жидким азотом). Эти моторы с хорошими для авиации характеристиками станут основой гибридной силовой установки для регионального самолета, который, возможно, поднимется в небо в середине будущего десятилетия.

сверхпроводник, электродвигатель,  HTS, турбогенератор, высокотемпературные сверхпроводники, самолет, электросамолет, ВТСП-платформа, Россия
На авиасалоне «МАКС» специалистами ЦИАМ был представлен демонстратор такой установки мощностью 10 кВт. Планируемый самолет будет оснащен гибридной силовой установкой с двумя двигателями мощностью 500 кВт каждый.

 

 

Удивительные свойства сверхпроводимости

Сверхпроводимостью называется обращение в ноль электрического сопротивления при достижении проводником некоторой (критической) температуры. Низкотемпературная сверхпроводимость связана с прекращением теплового движения атомов вещества и образованием куперовских квазичастиц (связанных пар электронов).

 

Высокотемпературные сверхпроводники (HTS) – решение проблемы повышения эффективности электрической тяги, они делают возможным использование двигателей большой мощности и малой массы. ВТСП материалы теряют свое электрическое сопротивление ниже температуры сверхпроводящего перехода. Для обычных сверхпроводников эти температуры перехода настолько низки, что их необходимо в основном охлаждать с использованием жидкого гелия (-269 °C). HTS, с другой стороны, работают при сравнительно высоких температурах и могут охлаждаться с использованием жидкого азота (-196 ° C), дешевого и распространенного хладагента. Несколько производителей уже разработали методы производства ВТСП-проволоки, цена которой даже приближается к цене меди.

 

В отличие от низкотемпературных сверхпроводников, высокотемпературные сверхпроводники (ВТСП) не так легко поддаются изготовлению из проводов. HTS, например, YBa2Cu3O7-x (YBCO), являются хрупкой керамикой и из-за их большой кристаллографической анизотропии требуют высокого уровня выравнивания зерен. Проще говоря, эти материалы переносят большие токи только тогда, когда они существуют в виде почти идеального кристалла. Поэтому существует проблема как сделать провода из такого материала. Производители нашли способ. За последнее десятилетие несколько компаний по всему миру производили высокотемпературный сверхпроводящий провод. Стратегия заключается в нанесении тонкой пленки YBCO на гибкую металлическую ленту. YBCO получают превосходную двуосную текстуру или выравнивание кристаллических зерен либо путем нанесения текстурирующего буферного слоя между лентой и ВТСП, либо путем термомеханической обработки металлической ленты перед нанесением покрытия YBCO.

 

Эти так называемые покрытые проводники могут переносить тысячи ампер тока в слое YBCO толщиной всего несколько микрон - примерно в сто раз тоньше человеческого волоса. Более того, поскольку провода не оказывают электрического сопротивления, резистивный нагрев отсутствует, а после охлаждения требуется очень мало охлаждающей мощности во время работы. Для приложений, где нам нужны очень большие токи, медные провода становятся слишком массивными и требуют слишком большой охлаждающей мощности, что делает HTS-провод очень привлекательной альтернативой.

сверхпроводник, электродвигатель,  HTS, турбогенератор, высокотемпературные сверхпроводники, самолет, электросамолет, ВТСП-платформа, Россия
Схема покрытого проводника с видимой металлической ленточной подложкой, буферными слоями и сверхпроводящими слоями. В этом случае используется очень похожий HTS на YBCO, называемый GdBCO.

 

 

 

Будущее высокотемпературных сверхпроводников

Все эти проекты более или менее демонстрируют возможности, которые может предложить HTS. Последней проблемой на долгом пути к появлению большего количества сверхпроводящих материалов в энергетике является снижение затрат: сложный производственный процесс делает высокопроизводительными ВТСП-провода. Однако цена на высокотемпературный сверхпроводящий провод неуклонно снижается и приближается к ценовому диапазону медного провода (30–80 долл. США / кАм). Это обусловлено инвестициями в увеличение массового производства проволоки ВТСП.

сверхпроводник, электродвигатель,  HTS, турбогенератор, высокотемпературные сверхпроводники, самолет, электросамолет, ВТСП-платформа, Россия
Силовой кабель HTS от Nexans с тремя отдельными электрическими фазами покрытых проводников. Жидкий азотный теплоноситель протекает в одну сторону через центр кабеля и обратно через внешний слой.

Провод ВТСП может проводить тот же ток, что и медный кабель, примерно в одной десятой части поперечного сечения. Поэтому, когда используется для замены медных обмоток и постоянных магнитов, ВТСП-проволока обеспечивает значительное уменьшение объема и может создавать гораздо более высокие магнитные поля. Это позволяет создавать более компактные электродвигатели большей мощности.

 

Другим важным преимуществом замены меди на ВТСП в двигателях является отсутствие резистивного нагрева во время работы, а это означает, что требуется только очень небольшая мощность охлаждения, когда сверхпроводник ниже своей температуры перехода. Конечно, одна из основных проблем всегда заключается в том, как реализовать криогенную систему, необходимую для охлаждения вращающихся ВТСП-катушек. Это, однако, задача инженеров. За последние несколько десятилетий несколько производителей строили и испытывали мощные ВТСП-двигатели с высоким крутящим моментом, необходимым для судовых движителей. Siemens, например, продемонстрировал двигатель мощностью 4 МВт [6] и AMSC, систему 36,5 МВт.

сверхпроводник, электродвигатель,  HTS, турбогенератор, высокотемпературные сверхпроводники, самолет, электросамолет, ВТСП-платформа, Россия
НАСА N3-X, самолет, предназначенный для приведения в движение с помощью вентиляторов с приводом от двигателя HTS, работающих на турбогенераторах HTS, установленных на кончиках крыльев.

Когда речь заходит об авиации, то перспетктивы электрических самолетов кажутся даже дальше электрических кораблей. Однако работа, проделанная на судовых двигателях HTS на протяжении многих лет, продемонстрировала, что преимущества, которые HTS привносит в технологию двигателей, еще более применимы к авиации. Самолеты предъявляют очень строгие требования к весу, что проявляется в заинтересованности отрасли в компонентах, изготавливаемых с добавками (а также в некоторых менее технологичных идеях). Следовательно, снижение расхода топлива не только необходимо для сокращения выбросов, но и является мощным финансовым фактором, Добавьте к этому преимущества снижения шума, загрязнения воздуха и электрификации авиации, которые становятся очень привлекательными для отрасли.

сверхпроводник, электродвигатель,  HTS, турбогенератор, высокотемпературные сверхпроводники, самолет, электросамолет, ВТСП-платформа, Россия
Гибридно-электрический демонстратор полета E-Fan X, совместный проект Airbus, Siemens и Rolls-Royce, в котором один из четырех газотурбинных двигателей будет заменен электродвигателем мощностью 2 МВт. Летать планируется к 2020 году.

Разработки для пассажирских электрических самолетов в самом разгаре. Над прототипами работают Airbus, Wright Electric и Zunum Aero. Это в основном гибридные концепции, которые продемонстрируют работу электрических машин в тандеме с турбинными двигателями для тяги. В такой конфигурации моторы HTS могут внести существенный вклад. За рамками этого НАСА изложило планы по разработке самолета N3-X. Это должно обеспечить снижение расхода топлива на 70% за счет использования двух газовых HTS-генераторов для питания распределенных вентиляторных HTS-двигателей.

 

Несмотря на преимущества, в действительности внедрение HTS в двигательной установке происходит достаточно медленно. Скорее всего, это связано со сложностями технологии и связанных с этим дополнительных затрат на разработку.

Тем не менее, успехи, достигнутые в использовании свойств материалов HTS с момента их открытия в 80-х годах, были огромными. Усилия по-прежнему требуются для внедрения двигателей HTS в больших масштабах, однако, особенно в случае авиации, амбициозные цели развития никогда не препятствовали прогрессу.

 

Поскольку давление увеличивается для сокращения выбросов на транспорте, HTS будет предлагать не только усовершенствования обычных устройств, но и станет ключевой технологией.

сверхпроводник, электродвигатель,  HTS, турбогенератор, высокотемпературные сверхпроводники, самолет, электросамолет, ВТСП-платформа, Россия
Разработки для пассажирских электрических самолетов уже в самом разгаре, над прототипами работают Airbus, Wright Electric и Zunum Aero. Это в основном гибридные концепции, которые продемонстрируют работу электрических машин в тандеме с турбинными двигателями для тяги. В такой конфигурации моторы HTS могут внести существенный вклад. За рамками этого НАСА изложило планы по разработке самолета N3-X. Это должно обеспечить снижение расхода топлива на 70% за счет использования двух газовых HTS-генераторов для питания распределенных вентиляторных HTS-двигателей.
Нашли опечатку? Выделите фрагмент и нажмите Ctrl+Enter.

Новости о науке, технике, вооружении и технологиях.

Подпишитесь и будете получать свежий дайджест лучших статей за неделю!