«Представьте себе резиновую ленту, – рассказывает старший автор работы Альфред Кросби, профессор Массачусетского университета в Амхерсте. – Вы натягиваете её, отпускаете, и она летит через всю комнату. Теперь представьте суперрезиновую ленту. Когда вы растягиваете её до определённой длины, вы активируете дополнительную энергию, запасённую в материале, и [такая лента] сможет пролететь больше километра».

 

Фазовые переходы материалов имеют большой потенциал в системах управления движением и событиями при высокоскоростной передаче энергии, однако проектирование обычных фазовых переходов на молекулярном или атомном уровне является сложной задачей. Ученые смогли решить эту проблему, связывая несколько взаимодействующих полей в рамках метаматериала.

Новое твердое вещество похоже на резину, но обладающее необычными свойствами. Оно способно поглощать и выделять очень большое количество энергии, причем делать это с заранее заданным результатом. Новый материал имеет большие перспективы для очень широкого спектра приложений, включая робототехнику, транспорт, создание средств защиты и защитных материалов, которые могут рассеивать энергию гораздо эффективнее.

метаматериал, энергия, резина
 

Эта гипотетическая резиновая лента, про которую говорит Альфред Кросби, сделана из нового метаматериала (вещества, обладающего свойствами, не встречающимся в природе), который сочетает в себе эластичное, похожее на резину вещество с встроенными в него крошечными магнитами. Этот новый «эластомагнитный» материал использует физическое свойство, известное как фазовый сдвиг, чтобы значительно увеличить количество энергии, которое материал может высвобождать или поглощать.

метаматериал, энергия, резина
 

Фазовый сдвиг происходит, когда материал переходит из одного состояния в другое: например вода, превращающаяся в пар, или жидкий бетон, затвердевающий в конструкциях. Всякий раз, когда материал меняет свою фазу, энергия либо высвобождается, либо поглощается. И фазовые сдвиги не ограничиваются только переходами между жидким, твердым и газообразным состояниями — переход может происходить из одной твердой фазы в другую. Фазовый сдвиг, высвобождающий энергию, можно использовать как источник энергии, но получение достаточного количества энергии всегда было трудной задачей.

 

 

«Чтобы усилить высвобождение или поглощение энергии, вы должны разработать новую структуру на молекулярном или даже атомном уровне, - говорит Кросби. - Однако это сложно сделать и еще труднее сделать предсказуемым образом. Но, используя метаматериалы, мы преодолели эти проблемы и не только создали новые материалы, но и разработали алгоритмы проектирования, которые позволяют программировать эти материалы с определенными реакциями, делая их предсказуемыми».

метаматериал, энергия, резина
 

Ученые подчерпнули вдохновение в ​​некоторых молниеносных реакциях наблюдаемыми в природе: захлопыванием венериных мухоловок и муравьёв-ловушек. Встраивая крошечные магниты в эластичный материал, они смогли контролировать фазовые переходы. А поскольку фазовый сдвиг предсказуем и повторяем, можно спроектировать метаматериал так, чтобы он делал именно то, что нужно: либо поглощать энергию сильного удара, либо высвобождать большое количество энергии для взрывного движения.

  

Как заявляют исследователи, новый метаматериал применим в любом сценарии, где необходимы либо мощные удары, либо молниеносные реакции. Работа ученых была опубликована в журнале Proceedings of the National Academy of Sciences.

 

 

НиТ писал про метаматериал, который имеет искусственно созданную периодическую структуру и полностью прозрачен для электромагнитных волн за счет возбуждения в них «анаполей». Объекты не отражают сигнал, а пропускают его насквозь благодаря возбуждению особого состояния электромагнитных полей.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl+Enter.

Новости о науке, технике, вооружении и технологиях.

Подпишитесь и будете получать свежий дайджест лучших статей за неделю!