Известная фраза Эйнштейна о том, что «Бог не играет в кости со Вселенной», часто интерпретируется, как аргумент против фундаментальной случайности, присущей квантовой механике. На протяжении веков законы физики казались полностью детерминированными.

В то время как Эйнштейн стремился к устойчивым законам, которые объясняли бы реальное устройство вселенной, квантовая теория, похоже, намеревалась без таковых обойтись – ведь, как мы помним, одним из ее основных положений является принцип неопределенности. Эйнштейн верил в детерминированный мир, в котором любое событие имеет свою причину.

 

«Я нахожу абсолютно недопустимым предположение, что электрон, которому предстоит быть излученным, должен самостоятельно, по собственной воле выбирать не только момент скачка, но и его направление. Если это так, я предпочел бы быть сапожником или крупье в казино, но не физиком».

При этом Эйнштейн вовсе не считал квантовую механику по сути ошибочной. Точнее сказать – он считал ее незавершенной. Свою работу по квантам от 1905 года он назвал «эвристической» – и примерно под тем же углом рассматривал квантовую физику в целом. В 1926 году он выразил эти ощущения Максу Борну в следующих словах: «Квантовая механика достойна всяческого уважения. Но внутренний голос говорит мне, что это еще не окончательное решение»

квантовая физика, квантовая механика, телепортация, квантовая неопределенность, Альберт Эйнштейн, Чед Орзель
Нильс Бор и Альберт Эйнштейн.

На самом деле существует реальное явление, известное как квантовая телепортация , но это не означает, что физически возможно телепортировать физический объект из одного места в другое.

Но, это процесс работает только для отдельных частиц и телепортирована может быть только информация о неопределенном квантовом состоянии, а не какая-либо физическая материя. Даже если бы вы могли масштабировать это для передачи квантовой информации, которая кодирует все человеческое существо, передача информации - это не то же самое, что и передача материи: вы никогда не сможете телепортировать человека с помощью квантовой телепортации.

Но, в нашем мире есть квантовая механика, которая усложняет ситуацию.

 

 

 

квантовая физика, квантовая механика, телепортация, квантовая неопределенность, Альберт Эйнштейн, Чед Орзель
Иллюстрация: неопределенность и импульс на квантовом уровне.

Одним из наиболее важных, фундаментальных правил Вселенной является то, что существует неопределенность, связанная со знанием положения и импульса любой отдельной частицы. Чем лучше вы измеряете одну из этих величин, тем более неоднозначным становятся ваши знания о другой. Этот принцип известен как принцип неопределенности Гейзенберга. Невозможно узнать положение и импульс даже одной частицы одновременно, а тем более нескольких частиц одновременно. Без этой информации у вас нет возможности узнать квантовое состояние частицы.

квантовая физика, квантовая механика, телепортация, квантовая неопределенность, Альберт Эйнштейн, Чед Орзель
Создав два запутанных фотона из уже существующей системы и разделив их, можно «телепортировать» информацию о состоянии одного, измеряя состояние другого.

 

Квантовая телепортация, средство передачи идентичности одной частицы другой на некотором расстоянии, - это реальное явление.Но сама квантовая телепортация не транспортирует и не телепортирует какие-либо частицы. Передается из одного места в другое - информация, присущая неопределенному квантовому состоянию, и это именно то, что вам нужно для достижения вашего пункта назначения!

 

 

Если вы хотите отправить какую-либо информацию из одного места в пространстве-времени в другое, вы ограничены расстоянием в пространстве-времени, которое должен преодолеть сигнал, и универсальным ограничением скорости: скорость света. Квантовая запутанность может «обмануть» скорость света, но не может отправить никакую информацию, поскольку запутанные частицы нужно создать в запутанном состоянии и затем разделить на ограниченной скорости. Измерения, которые вы проводите с одной частицей, будут влиять на другую, но информация не будет передаваться; передать сигнал посредством запутанных частиц (насколько нам пока известно) нельзя.

Открытие о том, что возможно перемещать информацию,  было сделано в 1993 году командой Чарльза Беннетта, Жиля Брассара, Клода Крепо, Ричарда Джосса, Ашера Переса и Уильяма К. Вуттерса в их статье «Телепортация. Неизвестное квантовое состояние по двойственным классическим каналам и каналам Эйнштейна-Подольского-Розена».

Феномен квантовой телепортации был известен на протяжении десятилетий и был экспериментально подтвержден при различных обстоятельствах. Однако его полезность была ограничена:

  • он работает только на отдельных частицах;
  • ничто материальное не перемещается с места на место;
  • обмениваемые фотоны должны путешествовать от источника к месту назначения;
  • и они ограничены тем, как далеко вы можете транспортировать фотон, не теряя свой сигнал.
квантовая физика, квантовая механика, телепортация, квантовая неопределенность, Альберт Эйнштейн, Чед Орзель
Схематическая иллюстрация квантовой телепортации между бостонским терьером Трумэном и лабрадором RD. Изначально у Трумэна есть поляризованный фотон, чье состояние (черная стрелка) он хочет поделиться с RD,  две собаки имеют запутанную пару (синие облака). В конце процесса половина RD запутанной пары приняла поляризацию начального состояния Трумэна, и два фотона Трумэна оказались в новом, неопределенном состоянии (серые облака). Рисунок Чеда Орзеля, взятый из книги «Как преподавать физику своей собаке»

Протокол квантовой телепортации удивительно прост. Все, что нужно сделать Трумэну, - это совместное измерение фотонов 1 и 2, по сути, спрашивая: «У вас одинаковая поляризация или разные поляризации?» Это сделано способом, который не раскрывает фактическую поляризацию - он не знает, являются ли они оба вертикальными или горизонтальными, просто они одинаковы - что помещает фотоны 1 и 2 в одно из четырех возможных запутанных состояния.

После измерения Трумэна два его фотона запутались, что оставляет фотон 3 RD в одном из четырех определенных состояний поляризации. Ничто из этого не является точной суперпозицией вертикальной и горизонтальной поляризации, с которой начинал Трумэн, но все они просто связаны. Затем Трумэн сообщает RD, какой из четырех результатов измерений он получил, что позволяет RD знать, какие операции ему необходимо выполнить для преобразования фотона 3 в точную копию исходного состояния Трумэна.

Как отмечалось выше, это не ограничивается фотонами - вы можете использовать запутанные фотоны для передачи состояния материальных объектов, таких как атомы, это просто добавляет шаг к процессу на любом конце. Если Трумэн хочет послать состояние атома RD, он просто выполняет операцию, чтобы закодировать суперпозицию двух атомных состояний в поляризацию своего фотона 1, а затем действует, как описано выше. RD использует результаты измерений Трумэна, чтобы привести фотон 3 в правильное состояние, а затем переворачивает операцию Трумэна, чтобы перенести суперпозицию поляризации на его атом.

 

 

К сожалению, наличие информации для кодирования человека и практическая возможность построить живое существо из необработанного набора частиц - это две совершенно разные вещи.  Знание информационного состояния человека - включая все составляющие его частицы - это одно дело, но реконструкция этого человека - совсем другое дело.

В   человеческом мозге около ста миллиардов нейронов, и между ними около  ста триллионов связей . Это около 2 100 000 000 000 000  возможных состояний для беспокойства, или примерно 10 30 000 000 000 000

 

Для телепортация живого человека потребуется гораздо больше, чем просто информация, кодирующая его. Фактически, информационная проблема может быть решаемой, если мы можем свести ее к количеству частиц, составляющих человека. Но создать целого человека с нуля - не говоря уже о том, является ли этот человек в пункте назначения тем же человеком, с которым вы начали эксперимент - это проблема.

Тот факт, что вы не можете скопировать или клонировать квантовое состояние  - так как акт простого чтения состояния фундаментально мняет его - является гвоздем в гробу любой работоспособной схемы для достижения более быстрой, чем световой связи с квантовой запутанностью.

квантовая физика, квантовая механика, телепортация, квантовая неопределенность, Альберт Эйнштейн, Чед Орзель

Есть много тонкостей, связанных с тем, как квантовая запутанность на самом деле работает на практике , но ключевой вывод заключается в следующем: нет никакой процедуры измерения, которую вы можете предпринять, чтобы вызвать конкретный результат, сохраняя при этом запутанность между частицами. Результат любого квантового измерения неизбежно является случайным, сводя на нет эту возможность. Оказывается, Бог действительно играет в кости со Вселенной , и это хорошо. Никакая информация не может быть отправлена ​​быстрее, чем свет, что позволяет поддерживать причинность для нашей Вселенной.

 

Нашли опечатку? Выделите фрагмент и нажмите Ctrl+Enter.

Новости о науке, технике, вооружении и технологиях.

Подпишитесь и будете получать свежий дайджест лучших статей за неделю!