Среди современных концепций зарождения жизни одно из доминирующих положений занимает теория РНК-мира. Попробуем разобраться, что же это такое.

Структура молекулы транспортной РНК
Структура молекулы транспортной РНК
Изображение: petarg / Фотодом / Shutterstock

Открытия в молекулярной биологии прошлого столетия привели человечество к пониманию устройства жизни на химическом уровне. Выяснилось, что основу жизнедеятельности любого организма составляют две группы веществ-биополимеров: белки и нуклеиновые кислоты.

 

Белки, чьи длинные, хитроумно свернутые цепи состоят из десятков и сотен последовательно связанных аминокислот выполняют в клетке роль рабочих инструментов и универсального строительного материала. Белки-ферменты ускоряют и направляют все химические реакции, протекающие в клетке, формируя ее облик.

 

Но белки — временные инструменты, потребность в которых постоянно изменяется по ходу жизни организма. Для хранения же информации о белках, а значит и о строении самого организма, природа использует нуклеиновые кислоты — ДНК (дезоксирибонуклеиновую кислоту) и РНК (рибонуклеиновую кислоту). Эти длинные молекулы, построенные из сцепленных между собой четырех видов нуклеотидов, очень похожи по строению, но обладают разными свойствами. Две направленные в разные стороны цепи ДНК формирует жесткую и стабильную двойную спираль длиной в миллионы пар нуклеотидов. РНК же образует сравнительно короткие цепи, подверженные разнообразным химическим реакциям и заплетенные петлями сами на себя.

Структура молекулы ДНК
Структура молекулы ДНК
Изображение: Richard Wheeler / Wikimedia

Столь различная структура объяснила ученым принципиально разные функции ДНК и РНК. ДНК оказалась надежным, долговременным хранилищем информации о белках организма, а РНК — мобильным, коротко живущим переносчиком информации. Она синтезируется белками-полимеразами по ДНК-матрице, и отвечает за расшифровку информации, записанной в ДНК, а также за сборку белков по ДНК-чертежу.

 

Весь этот ворох знаний был накоплен учеными к середине 60-х годов прошлого столетия, став предтечей настоящей биотехнологической революции. Но, одновременно, он поставил ученых, мучающихся над проблемой зарождения жизни, перед парадоксом.

 

Для существования первых «живых», то есть способных к размножению и самоподдержанию биохимических систем, достаточно ДНК, РНК и белка. С ролью РНК все вроде бы понятно — типичная молекула на побегушках, которая ничего толком не умеет и не решает, но необходима для переноса информации из ДНК и работы механизмов сборки белка. А вот белки и ДНК явно должны были занимать центральное место в картине доисторического мира.

 

Информация о структуре белков-катализаторов, умеющих все на свете, способна сохраняться, только будучи записанной в структуре ДНК. Одновременно, стабильная ДНК, отлично сохраняя информацию, не способна на самостоятельные химические превращения кроме, разве что, медленного распада. Что же появилось в эволюции раньше — умелые, короткоживущие белки или надежная, но беспомощная ДНК? Одно никак не может появиться без другого, а случайное одномоментное зарождение сложной ДНК-РНК-белковой самовоспроизводящейся системы казалось невероятным.

 

Тут взгляды ученых и обратились на РНК. РНК не стабильна, и ужасно плохо хранит информацию, но все же хранит ее. А что если допустить, что заплетенные в витиеватые петли цепи РНК смогут работать на подобие белков-ферментов, катализируя, то есть ускоряя биохимические реакции? Пусть они бы справлялись с этой задачей в сотни раз хуже белков, но, гипотетически, такие РНК-катализаторы могли бы устойчиво существовать и размножаться на поверхности древней Земли, еще до появления белков и ДНК. А их химическая нестабильность была бы даже плюсом, приводя к бешеному темпу эволюции первобытной РНК-фауны.

Космический корабль New Shepard, компания Blue Origin
Структура молекулы предшественника матричной РНК
Фото: Изображение: Vossman / Wikimedia

Смелая гипотеза оказалась пророческой, в начале 80-х были найдены первые рибозимы — биокатализаторы на основе РНК. Чуть позже ученые получили аптамеры — молекулы РНК, способные  избирательно связывать определенные вещества. Оказалось, что РНК может выполнять работу как по биокатализу, так и по молекулярному распознаванию. Да, у нее это получается хуже, чем у белков, но все же получается.

 

С тех пор ученые не оставляют настойчивых попыток получить в лаборатории рибозим, способный к устойчивому копированию (репликации) молекул РНК любой структуры. Появившись на заре эволюции, аналогичный рибозим стал бы настоящим «ядром» гипотетического РНК-мира, а его получение было бы осязаемым подтверждением пока еще умозрительной гипотезы.

 

За годы исследований, были получены рибозимы-лигазы, способные сшивать молекулы РНК между собой, и даже рибозимы-полимеразы, копирующие небольшие, однородные по своему нуклеотидному составу фрагменты РНК. Но на всех сложных, способных к биокатализу и молекулярному распознаванию последовательностях, они упрямо буксовали, отказываясь работать.

 

И вот недавно в авторитетном журнале PNAS была опубликована  статья о получении первого рибозима уверенно копирующего РНК-матрицы любого нуклеотидного состава. В ходе экспериментов ученые подменили собой эволюцию: путем искусственного отбора в пробирке, им удалось создать рибозим, копирующий РНК с недоступной ранее точностью.

 

Каждый из 24-х раундов мутации-отбора начинался с копирования уже существующего фермента в биохимическом процессе, получившем название рибоПЦР. Эта реакция — аналог хорошо известной полимеразной цепной реакции (ПЦР), позволяющей за несколько часов синтезировать миллионы копий нужного фрагмента ДНК. Для того, чтобы в системе появился материал для искусственного отбора, реакция была модифицирована в сторону уменьшения точности копирования. Частота ошибок достигала 10% в пересчете на отдельный нуклеотид. Благодаря этому запланированному случайному мутагенезу ученым удалось получить 1014 (100 триллионов!) различных вариантов исходного рибозима. После завершения реакции, мутантные рибозимы придирчиво отбирались учеными: в следующий раунд мутации проходили только самые быстрые и точные рибозимы, способные к наилучшему копированию матрицы.

 

После завершения этой кропотливой работы исследователи получили рибозим, названный, 24-3 полимераза. Впервые, в руки ученых попал рибозим, способный реплицировать небольшие цепи РНК любой последовательности. С его помощью удалось реплицировать несколько аптамеров. Затем неутомимой полимеразой был копирован каталитически активный рибозим-лигаза. Но настоящим достижением стало то, что с помощью 24-3 полимеразы удалось реплицировать одну из транспортных РНК. Эти крупные, хитро заплетенные в фигуру наподобие клеверного листа, молекулы РНК, переносят звенья-аминокислоты к месту сборки белковых цепей и являются важнейшим компонентом аппарата синтеза белка.

 

Скорость работы полученного рибозима оказалась крайне мала, а производительность несравнима с природными белками-полимеразами, но главное — он был получен, и он работает. Теперь для доказательства возможности существования древнего РНК-мира ученым остался последний шаг — создать рибозим, способный устойчиво реплицировать сам себя. Сделав его, человечество получит в пробирке колонию самокопирующихся молекул РНК — потенциальный аналог первой формы жизни на нашей планете.

 

Несколько месяцев работы позволили исследователям вплотную приблизиться к созданию искусственного прототипа первобытной жизни. Что же могло получится у естественного отбора за сотни миллионов лет? Еще никогда мы не были так близки к ответу на этот вопрос.

 

 

Источник: chrdk.ru

Нашли опечатку? Выделите фрагмент и нажмите Ctrl+Enter.

Новости о науке, технике, вооружении и технологиях.

Подпишитесь и будете получать свежий дайджест лучших статей за неделю!