Оптические волокна из кварцевого стекла традиционно используются для высокоскоростной оптической связи, обеспечивающей работу Интернета и облачных сервисов. Однако, из-за рассеяния света внутри стекла часть мощности теряется в процессе передачи (явление известно, как затухание).
При передаче более коротких длин волн света, ослабление сигнала увеличивается. Таким образом, значительные потери при передаче по оптоволокну ограничивают возможности его использования в случаях, когда требуется передать именно более короткие длины волн света.
В новом исследовании, ученые из Саутгемптонского университета продемонстрировали, что направление света через наполненные воздухом волокна позволяет решить эту проблему.

Команда исследователей создала полые волокна с потерями, меньшими, чем те, которые достигаются в твердых стеклянных волокнах на технологически важных длинах волн 660, 850 и 1060 нанометров. Направляя свет через наполненные воздухом волокна, исследователи значительно снизили затухание, а также ограничения, которые оно вызывает. Более низкое затухание в волокне, которое направляет свет через воздух, открывает возможности для достижений в квантовой связи, передаче данных и доставке лазерной энергии.

На последующих этапах были разработаны поверхности, имеющие физическую форму, подобную форме вложенных или гнездовых трубок. Конструкция обеспечивала формирование мод (моды - возможные направления распространения луча), которые исследователи направляли через воздушную сердцевину своего волокна. Оригинальность конструкции помогает сохранить яркость испускаемого лазерного света с низкими потерями на распространение (минимизация количества фотонов, теряемых при распространении). Они также сохранили степень поляризации света, необходимую для улучшения существующих сенсорных технологий и эндоскопических устройств. Это важно, поскольку свет, направляемый вдоль волокна, будет распространяться со стабильным распределением и не будет подвергаться изменениям или внешним возмущениям.
Исследования улучшенных оптических волокон - ключ к успеху во многих фотонных приложениях. В частности, это улучшит производительность Интернета, который в значительной степени зависит от оптических волокон для передачи данных, где существующие технологии достигают предела своих возможностей.
Проблема измерения сигналов, рассеянных обратно в полых волокнах
У оптического волокна свет, попадающий в него, по мере распространения частично отражается назад, что называется обратным рассеянием. Это обратное рассеяние часто крайне нежелательно, поскольку оно вызывает ослабление сигналов, распространяющихся по оптическому волокну, и ограничивает производительность многих волоконно-оптических устройств, таких как оптоволоконные гироскопы, которые используются для навигации на авиалайнерах, подводных лодках и космических кораблях.
Однако возможность надежного и точного измерения обратного рассеяния может быть полезна также и в других случаях, например, при определении характеристик волоконных кабелей, где обратное рассеяние используется для контроля состояния кабеля и определения местоположения любых разрывов по его длине.
Но последнее поколение вложенных антирезонансных безузловых волокон с полой сердцевиной (NANF) демонстрируют обратное рассеяние, которое настолько низкое, что его было невозможно измерить.
Чтобы решить эту проблему, исследователи Центра исследований оптоэлектроники (ORC) Саутгемптонского университета объединились с коллегами из Центра оптики, фотоники и лазеров (COPL) Университета Лаваля, Квебек.
Они разработали прибор, который позволил измерить чрезвычайно слабые сигналы, рассеянные обратно в полых волокнах. Устройство позволило подтвердить теоретические предсказания о том, что обратное рассеяние на четыре порядка меньше, чем в стандартных полностью стеклянных световодах.
Оптические волокна с полой сердцевиной - новые возможности использования
Новые волокна с полой сердцевиной обладают потенциалом, превосходящим существующие оптические волокна на различных длинах волн, используемых сегодня в оптических технологиях. Они не только имеют более низкое затухание, но и также могут выдерживать высокие интенсивности лазерного излучения, например, необходимые для плавления горных пород и бурения нефтяных скважин, а также для производства совершенных лазеров.
Волокна с полой сердцевиной также могут передавать неискаженные лазерные импульсы с пиковыми уровнями мощности, достаточно высокими, которые было невозможно передавать по стандартным стеклянным волокнам. Кроме того они сохраняют поляризацию света, необходимую для создания более точных датчиков и эндоскопов для визуализации скрытых объектов.
Предлагаемая технология имеет потенциал для использования в более быстрых центрах обработки данных с более короткими задержками для конечного пользователя, более точных гироскопов для межпланетных миссий, более эффективного производства на основе лазеров и многих других.