Рождение сложности. Эволюционная биология сегодня: неожиданные открытия и новые вопросы

Рецензия на книгу:

Рождение сложности. Эволюционная биология сегодня: неожиданные открытия и новые вопросы
Александр Марков
Рождение сложности. Эволюционная биология сегодня: неожиданные открытия и новые вопросы
М.: "Астрель", Серия: Библиотека фонда «Династия», - 2010 - 528 стр.

Автор — доктор биологических наук, ведущий научный сотрудник Палеонтологического института РАН, заведующий кафедрой биологической эволюции, лауреат ряда премий за вклад в популяризацию науки. О чём и для чего была написана эта книга, лучше всего сказал он сам:

 

"Изначальный замысел книги состоял в том, чтобы дать как можно более близкий к реальности портрет или мгновенный снимок стремительно развивающейся биологической науки — без попыток преждевременных глобальных обобщений, но с максимальным числом конкретных примеров, рассказов о реальных исследованиях и открытиях последних лет"

 

По зрелому размышлению  я дальше решила заменить рецензию подборкой цитат. Получится такой вот очень краткий конспект, который лучше любого пересказа позволит читателям сайта составить представление о книге и решить для себя, стоит ли её читать. Что до моего мнения, безусловно стоит. Это одна из самых захватывающих, подробных и доходчивых книг по истории жизни из тех, что мне доводилось читать. К тому же одна из самых свежих. Итак:

 

Эволюция — факт. В этом отношении биологи вполне единодушны. То, что эволюция идет самопроизвольно, без контроля со стороны разумных сил, по естественным (а не сверхъестественным) причинам, — это общепринятая, отлично работающая гипотеза, отказ от которой крайне нежелателен (пока не обнаружены факты, требующие этого), потому что он сделал бы живую природу в основном непознаваемой. Детали, механизмы, движущие силы, закономерности, пути эволюции — вот главный предмет исследований биологов-теоретиков в наши дни.

*

Что представляет из себя сегодня совокупность принятых научным сообществом представлений об эволюции, какому "-изму" она соответствует, как ее вообще называть — все это весьма непростые вопросы. Часто ее по инерции называют "дарвинизмом", но на исходное учение Дарвина уже наложилось столько уточнений, дополнений и переосмыслений, что такое наименование только сбивает с толку. Иногда эту совокупность пытаются приравнять к СТЭ, что тоже кажется мне не очень хорошей идеей. Сегодня и классический дарвинизм, и классическая СТЭ образца середины прошлого века похожи скорее на музейные экспонаты, чем на живые рабочие теории. Нет, их не опровергли, и не было никакого "краха дарвинизма", о котором так любят толковать далекие от биологии журналисты и писатели, но многочисленные последующие модификации существенно изменили наши представления об эволюции.

*

Это один из парадоксов современного общества. С одной стороны, за последние полвека биология достигла неслыханных успехов. С другой — чем глубже проникают биологи в тайны жизни, тем сильнее искажаются их открытия в СМИ и, как следствие, в общественном сознании. Это опасная тенденция, которая может в итоге привести к тому, что общество окончательно перестанет понимать, чем занимаются ученые и зачем они нужны.

*

Отвлечься от эволюции биолог может только уткнувшись носом в очень узкую, маленькую задачу — например, изучая строение ротового аппарата какого-нибудь жука. Но стоит хоть немного шире взглянуть на проблему — например, начать сравнивать этого жука с другими, чтобы определить его место в жучиной классификации, — и тотчас оказывается, что без эволюционных представлений уже не обойтись. Нужно понять, как, почему и зачем у данного жука сформировался именно такой ротовой аппарат; чем объясняется его сходство с другими жуками — родством (происхождением от общего предка) или параллелизмом, то есть формированием сходных приспособлений под действием отбора в сходных условиях существования, и так далее.

*

Существует довольно много способов добиться по-настоящему полного и глубокого незнания биологии. Самим биологам в этом иногда хорошо помогает узкая специализация. Людям, далеким от биологии, рекомендованы внимательный и вдумчивый просмотр низкосортных телепередач и чтение газетных статей, написанных малограмотными журналистами.

*

Рассказывают, как один профессор-биолог, услышав сетования коллег о том, что современные молодые ученые-де ничего не знают об истории науки, сказал: "Отчего же, у них есть очень четкое представление о периодизации. Все статьи они делят на две части: публикации последних двух-трех лет и старые работы". В нашей книге речь пойдет в основном о публикациях последних трех лет. Правда, к тому моменту, когда книгу напечатают, часть материалов рискует перейти в разряд "старых работ". Но тут уж, как говорится, наука бессильна. И я надеюсь, что изложенные здесь идеи не будут выглядеть сильно устаревшими еще хотя бы лет пять-семь.

*

Возможность органического синтеза в протопланетном облаке предполагалась давно, но подтверждена была лишь недавно, во многом благодаря работам академика В. Н. Пармона и его коллег из Новосибирского института катализа. При помощи сложных расчетов и компьютерного моделирования было показано, что в газово-пылевых протопланетных облаках имеются необходимые условия для синтеза разнообразной органики из водорода, азота, угарного газа, цианистого водорода и других простых молекул, вполне обычных в космосе. Непременным условием является присутствие твердых частиц-катализаторов, содержащих железо, никель и кремний.

*

Вместе с Землей возник и так называемый "геохимический круговорот". Одни вещества поступали из сдавленных, разогревшихся недр Земли, формируя первичную атмосферу и океаны. Другие приходили из космоса в виде падающих с неба остатков протопланетного облака, метеоритов и комет. В атмосфере, на поверхности суши и в водоемах все эти вещества смешивались, вступая друг с другом в химические реакции, и превращались в новые соединения, которые в свою очередь тоже вступали в реакции друг с другом.

 Между химическими реакциями возникала своеобразная конкуренция — борьба за одни и те же субстраты (исходные вещества, необходимые для их проведения). В такой борьбе всегда побеждает та реакция, которая идет быстрее. Так что среди химических процессов начинается настоящий естественный отбор. Медленные реакции постепенно затухают и прекращаются, вытесняемые более быстрыми.

*

Общепринятого определения жизни не существует (в биологии вообще с определениями трудно — обычно чем строже определение, тем хуже оно работает). Одни ученые полагают, что жизнь — скорее процесс, чем структура, и определяют ее, например, как "процесс сохранения неравновесного состояния органической системы извлечением энергии из среды". Такому определению могут соответствовать и системы, не имеющие четких пространственных границ, — автокаталитические циклы, "живые растворы". Другие подчеркивают обязательную дискретность живых объектов и считают, что понятие "жизнь" неотделимо от понятия "организм". Третьи подчеркивают информационную природу жизни и определяют ее как способность некого фрагмента информации ("репликатора") к самокопированию с использованием ресурсов внешней среды. Под это определение подходят не только биологические вирусы, но и компьютерные и даже распространяющиеся в обществе слухи, верования и т. п. (Ричард Докинз. Вирусы мозга). Но это, пожалуй, чересчур широкий взгляд на жизнь.

*

Любопытно, что многие рибозимы работают лучше всего при низких температурах, иногда даже ниже точки замерзания воды — в крошечных полостях льда, где достигаются высокие концентрации реагентов. Некоторые считают это свидетельством того, что жизнь зарождалась при низких температурах.

*

Все организмы дискретны в пространстве и имеют наружную оболочку. Трудно представить себе живое существо в виде туманного облачка или раствора (разве что в фантастическом романе). Однако поначалу преджизнь существовала именно в виде растворов. Чтобы не раствориться окончательно, не рассеяться в водах древних водоемов, "живые растворы" должны были ютиться в крошечных полостях, которые часто встречаются в минералах. Это тем более удобно, что некоторые минералы (например, пирит) являются неплохими катализаторами для многих биохимических реакций. Кроме того, поверхность минералов могла служить своеобразной матрицей, основой, к которой прикреплялись молекулы РНК. Упорядоченная структура кристаллов помогала упорядочить и структуру этих молекул, придать им нужную пространственную конфигурацию.

*

Еще лет 10-15 назад казалось, что РНК играет в клетке все-таки второстепенную роль. Сегодня стало ясно, что молекулы РНК являются активными участниками множества жизненно важных процессов. Постоянно открываются новые функциональные молекулы РНК и новые "роли", выполняемые этими молекулами в клетке.

*

Многие биологи полагают, что все разнообразие жизни на нашей планете происходит от единственного исходного вида — "универсального предка" по имени Лука (об этом прародителе всего живого на Земле мы уже упомянули в начале главы). Другие, в том числе крупнейший микробиолог академик Г.А. Заварзин, с этим не согласны. Они исходят из того, что устойчивое существование биосферы возможно только при условии относительной замкнутости биогеохимических циклов — в противном случае живые существа очень быстро израсходуют все ресурсы или отравят себя продуктами собственной жизнедеятельности.

 

 Замкнутость циклов может быть обеспечена только сообществом из нескольких разных видов микроорганизмов, разделивших между собой биогеохимические функции. Одни, используя ресурсы среды, наполняют ее продуктами своей жизнедеятельности, а другие, используя эти продукты, возвращают в качестве своих отходов первоначальный ресурс во внешнюю среду… Г.А. Заварзин считает, что организм, способный в одиночку замкнуть круговорот, так же невозможен, как и вечный двигатель.

 

Если принять этот ход рассуждений, то окажется, что, скорее всего, Лука был не единым видом микроорганизмов, а полиморфным сообществом, в котором происходил активный обмен наследственным материалом между организмами. Разнообразие, симбиоз, разделение функций и информационный обмен — изначальные свойства земной жизни.

*

Время появления жизни на Земле точно не известно. Ясно одно: если наша планета когда-то и была безжизненной, то не очень долго. Земля сформировалась 4,5-4,6 млрд лет назад, но от первых 700-800 млн лет ее существования в земной коре осталось слишком мало следов. Главное, не сохранилось осадочных пород, в которых в принципе могли бы быть обнаружены следы жизни…  Однако можно уверенно сказать, что 3,55 млрд лет назад на Земле уже жили разнообразные микроорганизмы, напоминающие бактерий. В отложениях этого возраста появляются первые строматолиты — особые слоистые осадочные образования, формирующиеся в результате жизнедеятельности микробных сообществ.

*

Древнейшие прокариоты, скорее всего, были хемоавтотрофами. Они "пристраивались" к какой-нибудь химической реакции, которая шла и без их участия, сама по себе, только медленно. При помощи подходящего фермента они начинали катализировать эту реакцию, многократно ускоряя ее, а выделяющуюся энергию использовали для синтеза АТФ.

*

В ходе своей жизнедеятельности микробы активно преобразуют соединения железа, серы, фосфора, образуя пириты, фосфориты и другие минералы. Как это происходит, не всегда понятно. Так что оценить масштабы этой четырехмиллиардолетней деятельности пока никто не берется. Между тем, зная механизм преобразования минералов микробами, можно было бы по внешнему виду минерала (в микромасштабе) и его составу отличить, создан ли минерал микроорганизмами или косной материей. Этот вопрос остро стоит, например, для марсианских минералов. Если бы удалось найти надежные признаки биологической активности в осадочных породах, то вопрос о жизни на Марсе был бы решен. Естественно, это касается и древней жизни на Земле.

*

По-видимому, эффективный фотосинтез возник не сразу. Начиналось все с того, что некоторые микробы научились немного "подкармливаться" солнечным светом при недостатке других источников энергии. Для такой "подкормки" не нужны сложные молекулярные комплексы — достаточно одного-единственного светочувствительного белка. Недавно выяснилось, что подобные архаичные, простые и малоэффективные способы утилизации солнечного света до сих пор очень широко распространены в мире прокариот. Стало ясно, что способность к росту за счет энергии солнечного света (фототрофность) распространена в живой природе гораздо шире, чем считалось до сих пор.

*

Но жизнь уже набирала силу, разнообразие микробов росло, и незамкнутые циклы постепенно начинали замыкаться. Планета захлебывается метаном и сульфатами? Что ж, эволюция нашла отличный выход из сложной ситуации: появились микроорганизмы, способные окислять метан при помощи сульфатов. Это были не просто микробы, а симбиотические микробные сообщества, состоящие из архей и бактерий. Архей окисляли метан, а бактерии восстанавливали сульфаты, причем оба процесса были каким-то не до конца еще понятным образом сопряжены между собой в неразрывное целое. Такие сообщества сохранились и по сей день в соответствующих местах обитания — там, где достаточно метана и сульфатов (например, в окрестностях подводных грязевых вулканов).

*

На сегодняшний день хорошо известно, что толща земной коры заселена микроорганизмами вплоть до глубины в 6-7 км или даже более. Подземные микробы, по-видимому, играют большую роль во многих геохимических процессах, в том числе в образовании и деструкции нефти и газа. Неясным остается вопрос о том, в какой степени эта инфернальная микробиота является автономной, независимой от "внешней", большой биосферы, которая живет в основном за счет энергии солнечного света.

*

Важнейшим поворотным пунктом в развитии жизни стало изобретение оксигенного, или кислородного, фотосинтеза, благодаря которому в атмосфере начал накапливаться кислород и стало возможным существование высших организмов. Это великое событие произошло, по-видимому, 2,5-2,7 млрд лет назад (хотя ряд ученых придерживается мнения о более раннем появлении кислородных фотосинтетиков). "Изобретателями" кислородного фотосинтеза были цианобактерии, или, как их раньше называли, сине-зеленые водоросли.

*

Типичным примером примитивизации дарвиновских идей является широко распространенное по сей день мнение о том, что в основе эволюции лежат исключительно эгоизм, конкуренция и безжалостная "борьба за существование". Каждый за себя, кто смел — тот и съел, побеждает сильнейший... Одним словом, сплошной "закон джунглей". Конкуренция, конечно, играет весьма важную роль и в биологической, и в социальной эволюции. Однако в конечном счете, как правило, в выигрыше оказываются не те, кто сумел добиться безраздельного господства в той или иной сфере и уничтожить всех конкурентов, а те, кому удалось наладить взаимовыгодное сотрудничество с ними и превратить врагов в друзей.

*

В биологии необходимость кооперации и симбиоза совершенно очевидна. Для того чтобы выжить и оставить потомство, каждое живое существо должно справиться с множеством разнообразных проблем. Нужно каким-то образом получать из окружающей среды необходимые вещества, а недостающие самостоятельно синтезировать из подручного материала; нужно добывать энергию, необходимую для энергоемких химических и физических процессов; нужно вовремя избавляться от отходов жизнедеятельности, находить подходящих партнеров для обмена наследственным материалом, заботиться о потомстве, защищаться от хищников и так далее — и все это в переменчивой, далеко не всегда благоприятной внешней среде. Требования, предъявляемые жизнью к каждому отдельному организму, не только многочисленны и разнообразны — очень часто они еще и противоречивы. Невозможно оптимизировать сложную систему сразу по всем параметрам: чтобы добиться совершенства в чем-то одном, приходится жертвовать другим. Поэтому эволюция — это вечный поиск компромисса, и отсюда следует неизбежная ограниченность возможностей любого отдельно взятого живого существа. Самый простой и эффективный путь преодоления этой ограниченности — симбиоз, то есть кооперация "специалистов разного профиля".

*

Наследственный материал прокариот (обычно это единственная кольцевая молекула ДНК — кольцевая хромосома) находится прямо в цитоплазме, то есть, образно говоря, в бурлящем биохимическом котле, где происходит обмен веществ и осуществляются тысячи химических реакций. В такой неспокойной обстановке очень трудно развить сложные и эффективные молекулярные механизмы регуляции работы генов. У эукариот функционирование генома регулируется сотнями и тысячами специализированных белков, а также особыми регуляторными РНК и другими молекулами. Весь этот управляющий аппарат находится в ядре клетки, и ядерная оболочка надежно защищает его от бурной биохимической деятельности цитоплазмы. Тонкая регуляция работы генов обеспечила эукариотам качественно иной уровень пластичности. Самое главное, она позволила клетке радикально менять свои свойства, структуру и облик, не изменяя при этом сам геном, а только усиливая или ослабляя работу разных генов. Именно эта пластичность позволила эукариотам в конце концов стать многоклеточными в строгом смысле этого слова. Ведь в настоящем многоклеточном организме не просто много клеток, а много разных типов клеток (покровные, мышечные, нервные, половые и т. д.) Однако геном у них у всех один и тот же!

*

Сообщество прокариот, слившееся в единый организм — эукариотическую клетку, — стало новым базовым "строительным блоком", усовершенствованным "кирпичиком" в том великом конструкторе, из которого эволюция по сей день продолжает собирать новые формы жизни.

*

Человека следует рассматривать как "сверхорганизм", чей обмен веществ обеспечивается совместной слаженной работой ферментов, закодированных не только в геноме Homo sapiens, но и в геномах сотен видов симбиотических микробов. Между прочим, доля человеческих генов в совокупном геноме этого "сверхорганизма" составляет не более 1%.

*

Жизненные задачи тоже у всех организмов сходны (выжить, добыть нужные вещества и энергию, вырасти, противостоять внешним разрушающим воздействиям, оставить потомство). Поэтому все имеющиеся в наличии на нашей планете фрагменты ДНК, во-первых, понятны для всего живого (могут быть более-менее адекватно прочтены и "интерпретированы" любой живой клеткой (Это доказывается, в частности, успехами генной инженерии. Гены одних организмов успешно работают в клетках других. Благодаря этому, например, диабетики сегодня обеспечены инсулином — человеческим белком, произведенным бактериями, которым пересадили человеческий ген)), во-вторых, все они являются фрагментами устройств, сходных по своим функциям.

*

В ряде экспериментов удалось показать, что одна-единственная случайная мутация может привести к целому комплексу изменений, в том числе к появлению новых полезных свойств и усложнению структуры бактериального сообщества.

 

Ключевым словом здесь является "сообщество". Новая сложность часто рождается в эволюции в результате взаимного приспособления изначально независимых объектов — организмов, клеток или генов. 

*

К сожалению, далеко не всегда можно уверенно отличить ископаемых прокариот от одноклеточных эукариот. Ведь от древних микробов ничего не остается, кроме минерализованных (окаменевших) оболочек.

 

Современные одноклеточные эукариоты обычно раз в десять крупнее прокариот, но это не абсолютное правило, и никто не знает, насколько строго оно соблюдалось в глубокой древности. Самым надежным признаком считается структура клеточной оболочки. Например, если она покрыта шипами, можно не сомневаться: перед нами представитель эукариот. Но далеко не все протисты имеют такие узнаваемые оболочки. Древнейшие ископаемые одноклеточные организмы, которых можно с полной уверенностью отнести к эукариотам, имеют возраст около 2,0-1,8 млрд лет.

*

Хорошим кандидатом на почетное звание древнейшего животного является Horodyskia, детально изученная российским палеонтологом М. А. Федонкиным совместно с западными коллегами.

 

 Городискию нашли в отложениях возрастом около 1,44 млрд лет в Северной Америке, а также в Австралии, где возраст вмещающих пород составляет 1,4-1,07 млрд лет. По-видимому, это было колониальное многоклеточное животное, отдаленно напоминающее современных гидроидных полипов. Колония имела общий "ствол" (столон), погруженный в грунт, на котором через равные промежутки сидели однообразные округлые "особи"-зооиды.

*

На сегодняшний день считается, что одноклеточные эукариоты переходили к многоклеточности более 20 раз, однако современные животные — результат лишь одного из этих событий.

*

Очень важно помнить, что геном работает не на уровне организма, а на уровне клетки. По сути дела он реально кодирует лишь биохимию и поведение одной клетки. Никакой "программы развития организма" в оплодотворенном яйце нет: там есть программа поведения клетки, не более. Что же касается "программы развития", то она самозарождается из взаимодействия делящихся клеток уже в ходе самого развития.

*

Морские ежи делятся на "правильных" — радиально-симметричных и "неправильных" — двусторонне-симметричных. Правильные ежи всеядные, живут на поверхности грунта, а неправильные зарываются в грунт и питаются детритом, то есть органическими остатками, которыми изобилует морское дно. Доказано, что неправильные ежи произошли от правильных в первой половине юрского периода.

*

Что такое "скорость эволюции"? Необходимо помнить, что под "скоростью эволюции" в зависимости от контекста могут подразумеваться два совершенно разных показателя. Одно дело — скорость образования разнообразных причудливых специализированных форм, совсем другое — скорость прогрессивных преобразований, связанных с выработкой новых адаптаций широкого профиля и ростом сложности организма. На маленьких изолированных клочках суши выше только первая из этих скоростей, тогда как вторая, наоборот, выше на больших материках с разнообразными условиями и сложными насыщенными экосистемами.

*

Еще пару десятилетий назад считалось, что мезозойские млекопитающие были малочисленной, второстепенной группой мелких крысоподобных зверьков, влачивших жалкое существование в тени господствовавших в то время динозавров. Благодаря находкам последних лет, значительная часть которых сделана китайскими палеонтологами, стало известно, что древние звери были весьма многочисленны, разнообразны и могли достигать размеров лисы или барсука.

*

Некоторые отечественные биологи-теоретики, такие как А. А. Любищев и С. В. Мейен, придавали вавиловским гомологическим рядам огромное значение и считали, что за этим явлением скрывается некий фундаментальный закон, управляющий, возможно, не только биологической эволюцией, но и всем мирозданием. Они подчеркивали, что гомологические ряды, подобные рядам Вавилова, наблюдаются и в строении кристаллов, и в структуре органических молекул. Интересно и то, что многие признаки, изменчивость которых подчиняется вавиловскому закону, например, сходные вариации формы листьев у очень далеких друг от друга растений — цветковых, голосеменных и папоротников, не имеют явного приспособительного значения. Поэтому происхождение такого сходства трудно объяснить естественным отбором.

По-видимому, в вавиловских рядах действительно проявляются некие общие законы развития (самоорганизации) сложных систем, причем не только биологических. Система, состоящая из взаимосвязанных элементов (блоков), может существовать в различных устойчивых состояниях, переходя из одного в другое, но число этих состояний ограничено, а их характер определяется свойствами элементов и структурой их взаимодействий.

*

Не случайно некоторые биологи сравнивают эволюцию с переделыванием самолета на лету. Поэтому каждое живое существо — это результат труднейшего компромисса между многими тысячами разнообразных требований, предъявляемых к системе как извне, так и изнутри.

*

С ростом сложности и совершенства организмов и их сообществ неизбежно растет и эффективность глобального круговорота веществ, в котором биосфера играет важнейшую роль и который определяет "лицо" нашей планеты. Например, самое сложное и совершенное из современных сообществ — тропический лес — не только чрезвычайно быстро "прокручивает" через себя огромные количества вещества и энергии, но и практически не производит никаких отходов. Там не образуется даже подстилка из листьев и других отмерших частей растений — все это очень быстро перерабатывается грибами, бактериями и беспозвоночными и возвращается в круговорот. Совсем по-другому обстояло дело, например, в древних лесах каменноугольного периода, в которых из-за несовершенства структуры сообщества огромные массы отмершей древесины накапливались, образуя месторождения каменного угля. В результате столь необходимый для жизни углерод безвозвратно выводился из глобального круговорота (Человек, сжигая каменный уголь, снова возвращает этот "потерянный" углерод в биосферу и делает его доступным для живых организмов. При сжигании угля образуется углекислый газ, из которого растения создают органические вещества в процессе фотосинтеза). Рост безотходности заметен и в эволюции организмов. У высших растений и животных постепенно растет продолжительность жизни, снижается "детская смертность", развивается забота о потомстве, что позволяет, в свою очередь, снизить уровень рождаемости — то есть фактически производить меньше заведомо обреченных на гибель потомков.

 

Все три названных закономерности: усложнение, рост устойчивости и безотходности — отчетливо прослеживаются и в развитии человеческого общества. Это позволяет говорить о преемственности социальной эволюции по отношению к эволюции биологической и придает особый смысл и практическое значение эволюционным исследованиям.

*

Может быть, самый главный из всех эволюционных законов — это постепенное отступление Смерти и Хаоса перед лицом развивающейся Жизни. 

*

Если вы, дорогие читатели, считаете, что честь изобретения генной инженерии принадлежит человеку, то мне придется вас разочаровать. Генная инженерия была изобретена бактериями задолго до появления Homo sapiens.

*

Человек стал первым в истории Земли гиперсоциальным животным. Этим термином обозначают способность к практически не ограниченному, и в том числе адаптивному, изменению структуры социума. Только человек способен в зависимости от условий радикально менять структуру своих коллективов, правила взаимоотношений с сородичами, способы добычи пропитания, устройство семьи и т. д. Многие антропологи считают эту особенность чуть ли не самой главной, базовой отличительной чертой человека, которая и вывела наш вид на качественно иной уровень эволюционного развития. Получается, что появление человека разумного стало естественным и закономерным результатом общей эволюционной тенденции к росту эффективности механизмов адаптациогенеза, к оптимизации эволюционного "случайного поиска". Не потому ли человек смог стать доминирующим видом на нашей планете?

*

Торжество лысенковщины в СССР и особенно репрессии против генетиков привели к окончательной дискредитации ламаркизма на Западе и догматизации принципа Вейсмана. Наука в очередной раз смешалась с политикой, что ей категорически противопоказано. Это не пошло на пользу ни советской, ни западной биологии. Два противоположных подхода к проблеме наследственности сошлись в смертельной схватке. Вопрос состоял уже не в том, могут ли наследоваться приобретенные признаки. Речь шла о борьбе двух "научно-социальных" систем: социалистической лысенковщины и буржуазного вейсманизма. После того как Лысенко утратил свое влияние, советская биология постепенно вернулась в русло мировой науки, вовсю занявшись генетикой. Но последствия этой коллизии дают о себе знать и по сей день: многих генетиков, как российских, так и зарубежных, до сих пор передергивает при одном упоминании о возможности наследования приобретенных признаков.

 

 Однако реальные факты показывают, что приобретенные признаки иногда все же могут передаваться по наследству. Безусловно, это происходит редко, это вообще нетипично, и случается такое только с некоторыми специфическими категориями наследственных признаков, которые можно назвать "приобретенными" лишь с определенной долей условности. Такие банальные вещи, как натренированные мышцы или отрезанные хвосты, конечно, не наследуются никогда. Однако по мере того, как наука все глубже проникает в тайны молекулярной организации живой клетки, становится все очевиднее, что организмы не передают своим потомкам приобретенные ими в течение жизни свойства не потому, что не могут, а потому, что не хотят. С чисто "технической" точки зрения определенные возможности такого рода у живых организмов имеются.

*

Живые организмы — не компьютеры. Работа французских генетиков, обнаруживших роль РНК в наследовании морфологических признаков у мышей, наряду с другими недавними открытиями показывает, что классические представления о природе "наследственной информации" и механизмах ее "прочтения" слишком упрощены. В действительности все гораздо сложнее. Приходится признать, что аналогии между живыми организмами и искусственными информационными системами, например компьютерами, вошедшие в моду в конце XX века, в значительной степени неправомочны. В отличие от компьютера в живых системах так называемая "информация", ее носители, а также "устройства" для ее прочтения и реализации оказываются слиты воедино и практически неразделимы. Например, РНК оказывается не только "результатом прочтения" генетического кода и средством передачи информации от ДНК к системе синтеза белка, но и активным участником и регулятором самого процесса "прочтения", способным менять смысл читаемых "сообщений".

*

Жизнь развивается как единое целое. "Блочная сборка", информационный обмен, кооперация, симбиоз — вот на чем, как мы теперь видим, основывалось развитие жизни с самых первых ее шагов на Земле. Как это не похоже на старые представления о всеобщей безжалостной борьбе и изолированном, одиноком пути каждого отдельного вида! Мы видим, как по мере развития биологической науки бывшие "паразиты" превращаются в друзей, "мусорная ДНК" — в ведущий фактор эволюционного прогресса, индивидуальные организмы — в симбиотические сверхорганизмы.